Novel oxo-bridged dinuclear molybdenum(II) complexes: reaction of $\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}$ with aromatic isocyanides. X-Ray crystal structures of $\left[\mathrm{Mo}_{2}(\mu-\mathrm{O})\left(\mathrm{RNC}_{10}\right]\left(\mathrm{BF}_{4}\right)_{2}\left(\mathrm{R}=2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right.$ and $[\mathrm{Mo}=\mathrm{O}) \mathrm{F}\left(\mathrm{RNC}_{4}\right]\left(\mathrm{BF}_{4}\right)\left(\mathrm{R}=2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)$

Toshiaki Igoshi, Tomoaki Tanase *, Yasuhiro Yamamoto *
Department of Chemistry, Faculty of Science, Toho University, Miyama, Funabashi, Chiba 274, Japan

Received 31 August 1994; in revised form 7 December 1994

Abstract

Treatment of the dinuclear molybdenum complex $\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}_{6}\right]_{6}\left(\mathrm{BF}_{4}\right)_{2}\right.$ with aromatic isocyanides (RNC) gave an oxo-bridged dinuclear molybdenum(II) complex, $\left[\mathrm{Mo}_{2}(\mu-\mathrm{O})\left(\mathrm{RNC}_{10}\right)\right]\left(\mathrm{BF}_{4}\right)_{2}(\mathbf{1})$, and a mononuclear molybdenum(IV) complex, $[\mathrm{Mo}(=$ $\mathrm{O}) \mathrm{F}\left(\mathrm{RNC}_{4}\right] \mathrm{BF}_{4}(2)\left(\mathrm{R}=2,6\right.$-dimethyiphenyl (Xyi) or 2,4,6-trimethylphenyl (Mes)), which were characterized by IR, electronic, ${ }^{1} \mathrm{H}$ and ${ }^{19}$ F NMR spectroscopy and X-ray crystallographic analyses. Complex $\mathbf{1 a}(\mathrm{R}=$ Xyl) crystallizes in the triclinic form, space group $P \overline{1}$, with $a=13.431(5) \AA, b=15.548(7) \AA, c=12.616(5) \AA, \alpha=111.74(3)^{\circ}, \beta=92.80(3)^{\circ}, \gamma=101.80(3)^{\circ}$ and $Z=1(R=0.060$ and $R_{\mathrm{w}}=0.054$ for 2818 independent reflections with $I>3 \sigma(I)$). Complex $2 \mathrm{~b}(\mathrm{R}=\mathrm{Mes})$ crystallizes in the triclinic form, space group $P \overline{1}$, with $a=14.317(4) \AA, b=16.16(1) \AA, c=8.968(8) \AA, \alpha=100.31(4)^{\circ}, \quad \beta=97.54(2)^{\circ}, \gamma=91.69(4)^{\circ}$ and $Z=2(R=0.059$ and $R_{\mathrm{w}}=0.059$ for 2225 independent reflections with $I>3 \sigma(l)$). Complex 1 consists of two molybdenum atoms bridged linearly by an oxygen atom. Each molybdenum atom is octahedrally coordinated by five isocyanides and an oxygen atom. Two equatorial planes, $\mathrm{Mo}\left(\mathrm{RNC}_{4}\right.$, mutually adopt an eclipsed form. The Mo-O bond length is $1.876(2) \AA$ and the Mo-O-Mo angle is constrained to 180°. Complex 2 has a distorted octahedral geometry, in which molybdenum atom is occupied by four isocyanides, O and F atoms.

Keywords: Molybdenum; Oxo-bridged dinuclear complexes; X-ray diffraction; Isocyanide; EHMO

1. Introduction

Multiple bonds between metal atoms of Group 6 have been known for many years and are still a topic of current interest. In particular, dinuclear tetracarboxylate complexes of $\mathrm{M}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}(\mathrm{M}=\mathrm{Cr}$, Mo, and W) that contain a $\sigma^{2} \pi^{4} \delta^{2} \mathrm{M}-\mathrm{M}$ quadruple bond have received considerable attention for their interesting structures, spectroscopic properties and reactivities [1]. However, the poor solubility of $\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{4}$ in organic solvents obstructed further development of their reactions with a number of organic molecules. Cotton et al. [2] and Pimblett and co-workers [3] independently reported the synthesis and characterization of $\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}{ }^{-}\right.$

[^0]$\left.\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}$ which is soluble in most polar organic solvents. We were interested in the reactivity of $\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}$, because of its good solubility and easy access of organic molecules to the $\left[\mathrm{Mo}_{2}\right]^{4+}$ center.

We report here the reaction of $\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}-\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}$ with aromatic isocyanides (RNC) to give a linear oxo-bridged dinuclear molybdenum(II) complex and a mononuclear molybdenum(IV) complex. In particular, the former compound is the first example of a μ-oxo dimolybdenum complex involving a divalent Mo center.

2. Experimental

All manipulations were carried out under a nitrogen atmosphere. Solvents were distilled over lithium aluminum hydride. $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ (Aldrich) was used as received.
$\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}$ [3] and isocyanides [4] were prepared by known methods. Infrared and electronic absorption spectra were recorded on Jasco FT/IR 5300 and Uhest-30 spectrometers, respectively. ${ }^{1} \mathrm{H}$ NMR spectroscopy was carried out on a JEOL EX-400 instrument at 400 MHz in CDCl_{3}, using tetramethylsilane (TMS) as an internal reference. ${ }^{19}$ F NMR spectroscopy was carried out on a Bruker AC250 instrument at 235 MHz in CDCl_{3}, using CFCl_{3} as an external reference.

2.1. Preparation of $\left[\mathrm{Mo}_{2}(\mu-O)(R N C)_{10}\right]\left(B F_{4}\right)_{2}$ (1) and $\left[\mathrm{Mo}(=O) F(R N C)_{4} / B F_{4}(2)\right.$

To a solution of $\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}$ ($300 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{NC}$ (XylNC) ($539 \mathrm{mg}, 4.0 \mathrm{mmol}$) in 40 ml of THF was added a drop of water and the mixture was stirred at room temperature for 12 h . The solvent was removed by evaporation to dryness under reduced pressure. The residue was washed with diethyl ether and extracted with CHCl_{3}. The solution was concentrated to ca .5 ml and addition of diethyl ether gave green crystals of $\left[\mathrm{Mo}_{2}(\mu-\mathrm{O})\right.$ $\left.(\mathrm{XyINC})_{10}\right]\left(\mathrm{BF}_{4}\right)_{2} \cdot 2 \mathrm{CHCl}_{3}(\mathbf{1 a})$, yield 30%. Anal. Calcd. for $\mathrm{C}_{90} \mathrm{H}_{90} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Mo}_{2} \mathrm{~N}_{10} \mathrm{O} \cdot 2 \mathrm{CHCl}_{3}: \mathrm{C}$, 57.19; H, 4.80 ; N, 7.25 . Found: C, 56.33 ; H, 4.79 ; N, 7.20%. IR (Nujol): $\nu_{\mathrm{N}=\mathrm{C}} 2062 \mathrm{~cm}^{-1}$. UV-Vis (CHCl_{3}): $\lambda_{\text {max }}(\log \varepsilon) 967$ (2.71), 831 (2.66), 565 (5.05), 328 (4.71) nm. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.07,2.37\left(\mathrm{~s}, o-\mathrm{CH}_{3}\right)$, 7.03-7.16 (m, Ar).

In the preparation of 1a, careful crystallization of the mother liquor gave yellow crystals of $[\mathrm{Mo}(=0)$ -
$\mathrm{F}\left(\mathrm{XylNC}_{4}\right]_{\mathrm{BF}}^{4}$ (2a), yield 18%. Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{BF}_{5} \mathrm{MoN}_{4} \mathrm{O}: \mathrm{C}, 58.24 ; \mathrm{H}, 4.89 ; \mathrm{N}, 7.55$. Found: C, 57.16; H, 4.56; N, 7.31%. IR (Nujol): $\nu_{\mathrm{N}=\mathrm{C}} 2170$; $\nu_{\text {Mo }=0} 949 \mathrm{~cm}^{-1}$. UV-Vis $\left(\mathrm{CHCl}_{3}\right): \lambda_{\text {max }}(\log \varepsilon)$: $276(4.72) \mathrm{nm} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 2.59\left(\mathrm{~s}, o-\mathrm{CH}_{3}\right)$, 7.29-7.44 (m, Ar). ${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta-121.62(\mathrm{~s}$, Mo-F) , - 155.12 (s, ${ }^{10} \mathrm{BF}_{4}$), $-155.17\left(\mathrm{~s},{ }^{11} \mathrm{BF}_{4}\right)$.

A similar procedure except using $2,4,6-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{NC}$ (MesNC) gave green crystals of $\left[\mathrm{Mo}_{2}(\mu-\mathrm{O})\right.$ $\left.(\mathrm{MesNC})_{10}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (1b) and yellow crystals of [Mo$(=\mathrm{O}) \mathrm{F}\left(\mathrm{MesNC}_{4}\right] \mathrm{BF}_{4}(\mathbf{2 b})$. 1b: yield 33%. Anal. Calcd. for $\mathrm{C}_{100} \mathrm{H}_{111} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{Mo}_{2} \mathrm{~N}_{10} \mathrm{O}: \mathrm{C}, 65.47 ; \mathrm{H}, 6.10 ; \mathrm{N}, 7.64$. Found: C, 65.47 ; H, $5.50 ; \mathrm{N}, 7.42 \%$. IR (Nujol): $\nu_{\mathrm{N}=\mathrm{C}}$ $2066 \mathrm{~cm}^{-1}$. UV-Vis $\left(\mathrm{CHCl}_{3}\right): \lambda_{\text {max }}(\log \varepsilon) 965(2.63)$, 830 (2.55), 568 (5.04), 330 (4.75) nm. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.00,2.30\left(\mathrm{~s}, o-\mathrm{CH}_{3}\right), 2.18,2.28$ ($\mathrm{s}, p-$ CH_{3}), 6.76, 6.80 ($\mathrm{s}, m-\mathrm{H}$). 2b: yield 16%. Anal. Calcd. for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{BF}_{5} \mathrm{MoN}_{4} \mathrm{O}: \mathrm{C}, 60.16 ; \mathrm{H}, 5.55 ; \mathrm{N}, 7.02$. Found: C, $60.16 ; \mathrm{H}, 5.40 \mathrm{~N}, 6.82 \%$. IR (Nujol): $\boldsymbol{\nu}_{\mathrm{N}=\mathrm{C}}$ 2193, 2162; $\nu_{\text {Mo }=0} 947 \mathrm{~cm}^{-1} . \mathrm{UV}-\mathrm{V}$ is $\left(\mathrm{CHCl}_{3}\right): \lambda_{\text {max }}$ $(\log \varepsilon) 484(2.64), 284(4.74) \mathrm{nm} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right):$ $\delta 2.37\left(\mathrm{~s}, p-\mathrm{CH}_{3}\right), 2.52\left(\mathrm{~s}, o-\mathrm{CH}_{3}\right), 7.08(\mathrm{~s}, m-\mathrm{H})$. ${ }^{19} \mathrm{FNMR}\left(\mathrm{CDCl}_{3}\right): \delta-122.44$ ($\mathrm{s}, \mathrm{Mo}-\mathrm{F}$),-155.53 (s , ${ }^{10} \mathrm{BF}_{4}$), $-155.58\left(\mathrm{~s},{ }^{11} \mathrm{BF}_{4}\right)$

2.2. X-ray crystallography

Crystal data and experimental conditions for 1a and 2b are listed in Table 1. Atomic positional parameters are listed in Tables 2 and 3. Green (1a) and yellow (2b) crystals sealed into a 0.7 mm o.d. glass capillary were used in the intensity data collection on a Rigaku AFC5S

Table 1
Crystallographic and experimental date for $\mathbf{1 a}$ and $\mathbf{2 b}$

Parameter	1a	2b
Formula	$\mathrm{C}_{92} \mathrm{H}_{92} \mathrm{~N}_{10} \mathrm{Mo}_{2} \mathrm{Cl}_{6} \mathrm{~F}_{8} \mathrm{OB}_{2}$	$\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{BF}_{5} \mathrm{MoO}$
M	1932.01	798.56
Crystallographic system	Triclinic	Triclinic
Space group	$P \overline{1}$ (No. 2)	P1 (No. 2)
$a(\AA)$	13.431(5)	14.317(4)
b (A)	15.548(7)	16.16(1)
c (${ }_{\text {A }}$)	12.616(5)	8.968(2)
$\alpha\left({ }^{\circ}\right)$	111.74(3)	100.31(4)
$\beta\left({ }^{\circ}\right)$	92.80(3)	97.54(2)
$\gamma\left({ }^{\circ}\right.$	101.80(3)	91.69(4)
$V\left(\AA^{3}\right)$	2373(2)	2021(3)
Z	1	2
$T\left({ }^{\circ} \mathrm{C}\right)$	23	23
$D_{\text {calcd. }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.352	1.312
$\mu(\mathrm{MoK} \alpha)\left(\mathrm{cm}^{-1}\right)$	4.91	3.71
No. of unique data	$2818(I>3 \sigma(I))$	2225 ($I>3 \sigma(I)$)
No. of parameters	547	469
$R^{\text {a }}$	0.060	0.059
$R_{\text {w }}{ }^{\text {b }}$	0.054	0.059

[^1]four-circle automated diffractometer with Mo $\mathrm{K} \alpha$ ($0.7107 \AA$) radiation. Three standard reflections were monitored every 150 reflections and showed no systematic decrease in intensity. Totals of 8741 reflections (1a) and of 5252 reflections ($\mathbf{2 b}$) were measured and intensi-

Table 2
Positional and thermal parameters for non-hydrogen atoms of the complex cation of 1a

Atom	x	y	z	$B_{\text {eq }}{ }^{\text {a }}$
Mo(1)	0.0408(1)	0.11869(7)	0.12405(9)	2.44(4)
O(1)	0	0	0	2.4(4)
N (1)	-0.0579(7)	$0.0108(6)$	$0.2863(7)$	$3.5(5)$
N(2)	-0.1644(8)	$0.1958(6)$	$0.1023(7)$	3.8(4)
N(3)	$0.1634(8)$	$0.2162(6)$	$-0.0385(9)$	4.2(5)
N(4)	$0.2602(8)$	0.0954(6)	0.2204 (8)	3.7(4)
N(5)	0.0787(8)	0.3163(7)	0.365(1)	4.5(5)
C(1)	-0.0236(9)	0.0521(7)	0.2322(9)	$2.9(5)$
C(2)	-0.093(1)	$0.1636(8)$	$0.103(1)$	3.5(5)
C(3)	0.117(1)	$0.1830(7)$	0.020(1)	3.2(5)
C(4)	0.185(1)	$0.0990(7)$	0.1780(9)	3.3 (5)
C(5)	0.073(1)	0.2523(8)	0.278(1)	3.4(5)
C(11)	-0.077(1)	-0.0507(8)	0.3451(9)	3.5(5)
C(12)	-0.007(1)	-0.1065(8)	0.342(1)	3.7(5)
C(13)	-0.026(1)	-0.170(1)	0.398(1)	5.9(7)
C(14)	-0.112(1)	-0.171(1)	0.456(1)	$6.5(8)$
C(15)	-0.177(1)	-0.114(1)	0.460(1)	5.4(6)
C(16)	-0.161(1)	-0.0529(8)	$0.403(1)$	4.0 (5)
C(17)	-0.234(1)	0.008(1)	0.408(1)	6.1(6)
C(18)	0.080(1)	-0.1025(8)	0.278(1)	$5.5(6)$
C(21)	-0.243(1)	0.243(1)	$0.103(1)$	4.5(6)
C(22)	-0.329(2)	0.220(1)	0.151(1)	$7.0(8)$
C(23)	-0.406(2)	0.265(2)	0.148 (2)	11(1)
C(24)	-0.392(2)	0.331(2)	0.099(2)	13(2)
C(25)	-0.307(2)	$0.356(1)$	$0.051(2)$	10(1)
C(26)	-0.227(1)	0.311(1)	0.052(1)	6.2(7)
C(27)	-0.135(1)	0.331(1)	-0.001(1)	8.1(8)
C(28)	-0.343(1)	0.145(1)	$0.198(1)$	10(1)
C(31)	$0.234(1)$	$0.248(1)$	-0.104(1)	4.3(6)
C(32)	0.217(1)	0.314(1)	-0.145(1)	6.3 (8)
C(33)	$0.291(2)$	0.340(1)	-0.209(2)	9 (1)
C(34)	0.374(2)	$0.303(2)$	-0.227(2)	10(1)
C(35)	$0.387(1)$	0.238(1)	-0.181(1)	$8.2(9)$
C(36)	0.319(1)	0.207(1)	-0.119(1)	$6.0(7)$
C(37)	0.337(1)	$0.138(1)$	-0.069(1)	$6.9(9)$
C(38)	0.131(1)	0.357(1)	-0.119(1)	8.5(9)
C(41)	0.348(1)	0.0930(9)	0.286(1)	3.8(5)
$\mathrm{C}(42)$	0.380(1)	0.0098(9)	$0.262(1)$	4.4(6)
$\mathrm{C}(43)$	$0.460(1)$	0.010(1)	$0.334(1)$	5.9(6)
$\mathrm{C}(44)$	0.507(1)	$0.093(1)$	0.426 (1)	6.0(6)
C(45)	0.475(1)	0.174(1)	0.447(1)	5.5(6)
$\mathrm{C} 46)$	$0.395(1)$	0.1776 (9)	$0.379(1)$	4.6(6)
C(47)	$0.358(1)$	0.2671(8)	$0.404(1)$	$6.9(6)$
$\mathrm{C}(48)$	$0.328(1)$	-0.0775(9)	0.160(1)	6.6(6)
C(51)	0.066(1)	$0.3808(8)$	0.476(1)	4.3(6)
C(52)	0.151(1)	0.4549(9)	0.540(1)	5.5(7)
C(53)	0.131(1)	0.512(1)	$0.650(1)$	6.6(8)
C(54)	0.037(2)	0.494(1)	$0.685(1)$	$7.1(8)$
C(55)	-0.043(1)	$0.423(1)$	$0.617(1)$	6.6(7)
C(56)	-0.031(1)	$0.3617(8)$	$0.507(1)$	4.4(6)
C(57)	-0.117(1)	0.2834(8)	$0.429(1)$	5.7(6)
C(58)	0.251(1)	0.477(1)	0.502(1)	7.5(7)

[^2]Table 3
Positional and thermal parameters for non-hydrogen atoms of the complex cation of $\mathbf{2 b}$

Atom	x	y	z	$B_{\text {eq }}{ }^{\text {a }}$
Mo(1)	0.2082(1)	0.23872(8)	0.1961(2)	3.71(6)
F(1)	0.2864(5)	0.2244(4)	0.3728(8)	5.0(4)
O(1)	$0.1366(6)$	$0.2612(5)$	$0.0371(9)$	4.1(4)
N(1)	0.3294(8)	$0.0958(7)$	-0.003(1)	4.1(6)
N(2)	0.0593(8)	$0.0913(7)$	0.256(1)	4.1(6)
N(3)	$0.1276(7)$	$0.3862(7)$	0.445 (1)	3.8(5)
N(4)	$0.3671(8)$	$0.3898(7)$	$0.196(1)$	4.0(6)
C(1)	$0.286(1)$	0.1452(8)	0.064(2)	3.8(7)
C(2)	0.111(1)	0.1426 (8)	0.233(2)	3.9(7)
C(3)	$0.148(1)$	0.3329(9)	0.352(2)	4.1(7)
C(4)	$0.310(1)$	$0.3356(9)$	0.184(2)	4.2(8)
C(11)	0.3819(9)	0.0434(8)	-0.094(1)	3.2(6)
C(12)	0.458(1)	0.0787(9)	-0.146(1)	3.9(7)
C(13)	0.504(1)	0.023(1)	-0.245(2)	$5.0(8)$
C(14)	0.474(1)	-0.061(1)	-0.292(2)	5.2(8)
C(15)	0.400 (1)	$-0.0907(8)$	-0.237(2)	$5.3(8)$
C(16)	0.352(1)	$-0.0407(9)$	-0.132(1)	4.1(7)
C(17)	0.487(1)	0.169(1)	-0.101(2)	7.1(9)
C(18)	0.272(1)	$-0.077(1)$	$-0.069(2)$	5.9(8)
C(19)	0.524(1)	-0.119(1)	-0.406(2)	$9(1)$
C(21)	-0.0111(9)	0.0352(8)	$0.283(2)$	2.9(6)
C(22)	$-0.010(1)$	-0.0493(9)	0.227(2)	3.7(7)
C(23)	-0.083(1)	-0.0989(8)	$0.258(2)$	4.0(7)
C(24)	$-0.150(1)$	-0.069(1)	0.342 (2)	4.7(9)
C(25)	-0.146(1)	$0.016(1)$	0.401(1)	4.8(7)
C(26)	-0.078(1)	0.0712(8)	$0.371(1)$	3.9(6)
C(27)	$0.065(1)$	$-0.0819(8)$	$0.136(2)$	6.4(8)
C(28)	-0.074(1)	$0.163(1)$	$0.432(2)$	7.1(9)
C(29)	-0.226(1)	-0.128(1)	$0.370(2)$	$9(1)$
C(31)	$0.1162(8)$	$0.4563(8)$	$0.557(1)$	3.3(6)
C(32)	0.082(1)	$0.4459(8)$	0.689(2)	4.1(7)
C(33)	$0.078(1)$	$0.519(1)$	$0.799(2)$	5.1(8)
C(34)	$0.105(1)$	0.596(1)	0.776 (2)	4.8(7)
C(35)	$0.141(1)$	$0.6026(8)$	0.640 (2)	5.0(7)
C(36)	0.147(1)	$0.5343(8)$	0.531(2)	4.0(7)
C(37)	0.053(1)	$0.360(1)$	0.711(2)	$7.0(9)$
C(38)	0.185(1)	$0.5435(8)$	0.385(2)	5.5(7)
C(39)	0.099(1)	0.674(1)	0.898(2)	7.5(9)
C(41)	0.438(1)	$0.4552(8)$	$0.213(2)$	3.9(7)
$\mathrm{C}(42)$	0.527(1)	0.4432(8)	$0.292(2)$	4.2(7)
C(43)	0.594(1)	0.511(1)	$0.311(2)$	5.5(8)
C(44)	0.574(1)	0.5830(9)	$0.256(2)$	4.6(8)
C(45)	0.487(1)	0.5912(8)	0.181(2)	4.0(7)
C(46)	$0.416(1)$	0.5278(9)	$0.154(1)$	3.8(9)
C(47)	0.546(1)	0.364(1)	$0.353(2)$	8(1)
C(48)	$0.321(1)$	0.5384(8)	$0.067(1)$	4.6(7)
C(49)	0.652(1)	0.653(1)	$0.279(2)$	8(1)

Estimated standard deviations are given in parentheses.
${ }^{\mathrm{a}} B_{\text {cq }}=8 \pi^{2} / 3 \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} b_{j}^{*} a_{i} a_{j}$.
ties were corrected for Lorenz-polarization effects. An absorption correction was applied by the Ψ scan method.

The structures were solved by direct methods with mithril [5]. The molybdenum atom was located in the initial E map and subsequent Fourier syntheses gave the positions of other non-hydrogen atoms. The $\mathrm{O}(1)$ atom of 1 a was located on an inversion center of the unit cell with an occupancy of 0.5 . The coordinates of all hydrogen atoms except for those of the solvent
molecules were calculated at the ideal positions with a C-H distance of $0.95 \AA$. The structure was refined with the full-matrix least-squares techniques minimizing $\Sigma w\left(\left|F_{\mathrm{u}}\right|-\left|F_{\mathrm{o}}\right|\right)^{2}$. Final refinement with anisotropic thermal parameters for non-hydrogen atoms (hydrogen atoms were not refined) converged to $R=0.060$ and $R_{\mathrm{w}}=0.054$ for $1 \mathbf{1 a}$ and $R=0.059$ and $R_{\mathrm{w}}=0.059$ for $\mathbf{2 b}$, where $R=\Sigma| | F_{0}\left|-\left|F_{\mathrm{o}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right|$ and $R_{\mathrm{w}}=$ $\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{0}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2} \quad\left(w=1 / \sigma^{2}\left(F_{\mathrm{o}}\right)\right)$. Atomic scattering factors and values of f^{\prime} and $f^{\prime \prime}$ for Mo, Cl, F, O, C, N and B were taken from Refs. [6] and [7]. A final difference Fourier synthesis showed peaks at heights up to $0.48 \mathrm{e}_{\AA^{-3}}$ (1a) and $0.44 \mathrm{e}^{\AA^{-3}}$ (2b), respectively. All calculations were carried out on a Digital VAX Station 3100 M38 with the TEXSANTEXRAY program system [8].

2.3. EHMO calculations

Extended Hückel molecular orbital (EHMO) calculations were carried out using the following program [9] and the parameters were taken from Refs. [10] and [11]. The Mo-C (axial), Mo-C (equatorial), Mo-O, $\mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{H}$ distances were set to $2.20,2.10,1.88,1.16$ and $1.05 \AA$ respectively. The $\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}, \mathrm{Mo}-\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{N}-\mathrm{H}$ bond angles were idealized to be linear. All $\mathrm{O}-\mathrm{Mo}-\mathrm{C}$ (equatorial) bond angles were idealized to 90°.

3. Results and discussion

3.1. Reaction of $\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}$ with Isocyanides

The reaction of $\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}$ with an excess of isocyanide in THF containing a drop of water at room temperature yielded two complexes (green and yellow); the former is formulated as $\left[\mathrm{Mo}_{2}(\mu-\mathrm{O})(\mathrm{RNC})_{10}\right]\left(\mathrm{BF}_{4}\right)_{2}(1 \mathrm{a}, \mathrm{R}=\mathrm{Xyl}, 30 \% ; 1 \mathrm{~b}, \mathrm{R}$ $=$ Mes, 33%) and the latter as $\left[\mathrm{Mo}(=\mathrm{O}) \mathrm{F}\left(\mathrm{RNC}_{4}\right] \mathrm{BF}_{4}\right.$ ($\mathbf{2 a}, \mathrm{R}=\mathrm{Xyl}, \mathbf{1 8 \%} ; \mathbf{2 b}, \mathrm{R}=\mathrm{Mes}, 16 \%$). Compounds $\mathbf{1}$ and 2 are sensitive to air. In the absence of a drop of water, compounds 1 and 2 were not obtained and the reaction led to uncharacterized oily compounds together with a small amount of the zerovalent molybdenum complex of isocyanide, $\mathrm{Mo}(\mathrm{RNC})_{6}$ [12]. The IR spectra of 1 showed a peak at $2062-2065 \mathrm{~cm}^{-1}$, corresponding to the terminal isocyanide groups $\left(\nu_{N \equiv \mathrm{C}}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectra indicated the presence of two kinds of isocyanides with a $1: 4$ intensity ratio. The electronic absorption spectra showed a characteristic band centered at $565-568 \mathrm{~nm}$ which was assigned to the $n \rightarrow \pi^{*}$ transition of the Mo-O-Mo unit compared with those of $\mathrm{Ru}^{\mathrm{IV}}-\mathrm{O}-\mathrm{Ru}^{\mathrm{IV}}$ and $\mathrm{Os}^{\mathrm{IV}}-\mathrm{O}-\mathrm{Os}^{\mathrm{IV}}$ compounds, having an isoelectronic structure [13]. The IR spectra of 2

Fig. 1. Perspective drawing of the complex cation of $\mathbf{1 a},\left[\mathrm{Mo}_{2}(\mu\right.$ O) $\left.(\text { XylNC })_{10}\right]^{2+}$.
showed peaks at $2162-2170 \mathrm{~cm}^{-1}$ and ca. $950 \mathrm{~cm}^{-1}$, assigned to the terminal isocyanide groups ($\nu_{\mathrm{N} \equiv \mathrm{C}}$) and the terminal oxo group ($\nu_{\mathrm{Mo}=0}$), respectively. The ${ }^{1} \mathrm{H}$ NMR spectra indicated the presence of one kind of isocyanide ligand, and the ${ }^{19} \mathrm{~F}$ NMR spectra exhibited the presence of coordinated fluorine atom at $\delta-122.62$ for $\mathbf{1 a}$ and -122.44 for $\mathbf{2 b}$.

3.2. Structure of $\left[\mathrm{Mo}_{2}(\mu-\mathrm{O})(\mathrm{XylNC})_{10}\right]\left(B F_{4}\right)_{2}$ $2 \mathrm{CHCl}_{3}(\mathrm{la})$ and $\left[\mathrm{Mo}(=O) \mathrm{F}_{\left(\mathrm{MeSNC}_{4}\right.}\right]_{\mathrm{BF}}^{4}$ (2b)

A perspective drawing of the complex cation of 1 a with the atomic numbering scheme is shown in Fig. 1 and bond distances and angles are given in Table 4. The cation of 1a has a crystallographically imposed centrosymmetry and consists of two molybdenum atoms

Table 4
Some selected bond distances (A) and angles $\left({ }^{\circ}\right)$ in $\mathbf{I a}$

Bond distances			
$\mathrm{Mo}(1)-\mathrm{O}(1)$	$1.876(2)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.15(1)$
$\mathrm{Mo}(1)-\mathrm{C}(1)$	$2.12(1)$	$\mathrm{N}(2)-\mathrm{C}(2)$	$1.17(1)$
$\mathrm{Mo}(1)-\mathrm{C}(2)$	$2.10(1)$	$\mathrm{N}(3)-\mathrm{C}(3)$	$1.18(1)$
$\mathrm{Mo}(1)-\mathrm{C}(3)$	$2.11(1)$	$\mathrm{N}(4)-\mathrm{C}(4)$	$1.15(1)$
$\mathrm{Mo}(1)-\mathrm{C}(4)$	$2.14(1)$	$\mathrm{N}(5)-\mathrm{C}(5)$	$1.16(1)$
$\mathrm{Mo}(1)-\mathrm{C}(5)$	$2.20(1)$		
Bond angles			
$\mathrm{Mo}(1)-\mathrm{O}(1)-\mathrm{Mo}(1)^{*}$	180.00	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{C}(1)$	$88.4(3)$
$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$175.9(9)$	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{C}(2)$	$95.9(3)$
$\mathrm{Mo}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	$173(1)$	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{C}(3)$	$91.9(3)$
$\mathrm{Mo}(1)-\mathrm{C}(3)-\mathrm{N}(3)$	$177(1)$	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{C}(4)$	$95.9(3)$
$\mathrm{Mo}(1)-\mathrm{C}(4)-\mathrm{N}(4)$	$171(1)$	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{C}(5)$	$173.5(3)$
$\mathrm{Mo}(1)-\mathrm{C}(5)-\mathrm{N}(5)$	$170(1)$	$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(3)$	$93.0(4)$
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(2)$	$91.9(4)$	$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(4)$	$168.1(4)$
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(3)$	$175.1(5)$	$\mathrm{C}(2)-\mathrm{Mo}(1)-\mathrm{C}(5)$	$80.9(4)$
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(4)$	$86.9(4)$	$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(4)$	$88.2(4)$
$\mathrm{C}(1)-\mathrm{Mo}(1)-\mathrm{C}(5)$	$86.0(4)$	$\mathrm{C}(3)-\mathrm{Mo}(1)-\mathrm{C}(5)$	$93.9(4)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	$165(1)$	$\mathrm{C}(4)-\mathrm{Mo}(1)-\mathrm{C}(5)$	$87.2(4)$
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(21)$	$174(1)$	$\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{C}(31)$	$169(1)$
$\mathrm{C}(4)-\mathrm{N}(4)-\mathrm{C}(41)$	$173(1)$	$\mathrm{C}(5)-\mathrm{N}(5)-\mathrm{C}(51)$	$167(1)$

Estimated standard deviations are given in parentheses.

Fig. 2. Moleculor orbital diagram of $\left[\mathrm{Mo}_{2}(\mu-\mathrm{O})(\mathrm{HNC})_{10}\right]^{2+}(3)$.
bridged by an oxygen atom. Each molybdenum atom is octahedrally coordinated by five isocyanides and the bridging oxygen atom. Two equatorial planes, $\mathrm{Mo}\left(\mathrm{RNC}_{4}\right)$, are mutually occupied with an eclipsed form. The most remarkable feature is that the apparent oxidation state of the molybdenum center is +2 . There are several known $\mathrm{d}^{4}-\mathrm{d}^{4} \mu$-oxo dinuclear complexes, such as $\mathrm{Mn}_{2}(\mu-\mathrm{O})(\mathrm{Pc})_{2}(\mathrm{py})_{2}$ and $\mathrm{K}_{4}\left[\mathrm{Ru}_{2}(\mu-\mathrm{O}) \mathrm{Cl}_{10}\right]$, but μ-oxo dimolybdenum(II) complexes have not been obtained [14]. Although many μ-oxo complexes of molybdenum are known, they have oxidation states of +5 [15]. The μ-oxo complex $\left[\mathrm{Mo}_{2}(\mu-\mathrm{O})\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{10}\right]-$ $\left(\mathrm{BF}_{4}\right)_{4}$ [16], which is isostructural with complex 1 has been reported, but the oxidation number of the Mo atoms is +3 . Compound $\mathbf{1}$ is isoelectronic with $\mathrm{Ru}(\mathrm{IV})$ and Os(IV) μ-oxo dimers and is the first isolated and characterized example of an oxo-bridged dimolybdnum (II) complex. The Mo-O-Mo angle is exactly 180° by

Fig. 3. Perspective drawing of the complex cation of $\mathbf{2 b}$, [Mo$\left.(=\mathrm{O}) \mathrm{F}(\mathrm{MesNC})_{4}\right]^{+}$.

virtue of the centrosymmetry of the complex cation. The Mo-O bond length of $1.875(2) \AA$ is slightly longer than that of $\left[\mathrm{Mo}_{2}(\mu-\mathrm{O})\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{10}\right]\left(\mathrm{BF}_{4}\right)_{4}(1.847(3) \AA)$ [12], indicating that the $\mathrm{p}_{\mathrm{x}} \rightarrow \mathrm{d}_{\mathrm{x}}$ donating interaction between the O and the two Mo atoms is weaker than that in $\left[\mathrm{Mo}_{2}(\mu-\mathrm{O})\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{10}\right]\left(\mathrm{BF}_{4}\right)_{2}$. The $\mathrm{Mo}-\mathrm{C}_{\mathrm{t}}-\mathrm{N}$ angles are in the range of $170-177^{\circ}$ (average 173°) and the $\mathrm{C}-\mathrm{N}-\mathrm{C}$ angles are in the range $165-174^{\circ}$ (average 169°). The $\mathrm{C}-\mathrm{N}$ distances have an average value of $1.16 \AA$. The Mo-C bond length of the axial isocyanide $(2.20(1) \AA)$ is longer than those of the equatorial isocyanides (average $2.11 \AA$) because of the high trans effect of the oxygen atom.

In an attempt to elucidate an electronic structure of $\mathbf{1}$, EHMO calculations were carried out on the model compound $\left[\mathrm{Mo}_{2}(\mu-\mathrm{O})(\mathrm{HNC})_{10}\right]^{2+}$ (3). The interaction diagram for $\mathbf{3}$ in terms of [(INC) $)_{5}$ Mo $\left.\mathrm{Mo}(\mathrm{HNC})_{5}\right]^{4+}$ and O^{2-} is illustrated in Fig. 2. The major interaction between two fragments is between the d_{π} orbitals of the Mo atoms and the porbitals of the O atom. The LUMO consists of one (π^{*}) of these interactions. These interactions are usual in linear $\mathrm{M}-\mathrm{O}-\mathrm{M}$ complexes [17]. The HOMO of $\mathbf{3}$ is a set of nonbonding orbitals composed of $d_{x z}$ and $d_{y z}$ orbitals of the Mo atoms, which are stabilized by bonding interaction with π^{*} orbitals of HNC ligands as illustrated. This effect

Table 5
Some selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathbf{2 b}$

Bond distances			
$\mathrm{Mo}(1)-\mathrm{F}(1)$	$1.871(8)$	$\mathrm{Mo}(1)-\mathrm{O}(1)$	$1.744(8)$
$\mathrm{Mo}(1)-\mathrm{C}(1)$	$2.17(1)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.16(1)$
$\mathrm{Mo}(1)-\mathrm{C}(2)$	$2.15(1)$	$\mathrm{N}(2)-\mathrm{C}(2)$	$1.16(1)$
$\mathrm{Mo}(1)-\mathrm{C}(3)$	$2.16(1)$	$\mathrm{N}(3)-\mathrm{C}(3)$	$1.16(1)$
$\mathrm{Mo}(1)-\mathrm{C}(4)$	$2.14(1)$	$\mathrm{N}(4)-\mathrm{C}(4)$	$1.16(1)$
Bond angles			
$\mathrm{F}(1)-\mathrm{Mo}(1)-\mathrm{O}(1)$	$175.1(4)$	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{C}(1)$	$94.9(4)$
$\mathrm{F}(1)-\mathrm{Mo}(1)-\mathrm{C}(1)$	$88.5(4)$	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{C}(2)$	$94.2(5)$
$\mathrm{F}(1)-\mathrm{Mo}(1)-\mathrm{C}(2)$	$89.2(4)$	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{C}(3)$	$92.7(5)$
$\mathrm{F}(1)-\mathrm{Mo}(1)-\mathrm{C}(3)$	$83.8(4)$	$\mathrm{O}(1)-\mathrm{Mo}(1)-\mathrm{C}(4)$	$91.1(4)$
$\mathrm{F}(1)-\mathrm{Mo}(1)-\mathrm{C}(4)$	$85.3(5)$	$\mathrm{Mo}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$178(1)$
$\mathrm{Mo}(1)-\mathrm{C}(2)-\mathrm{N}(2)$	$179(1)$	$\mathrm{Mo}(1)-\mathrm{C}(3)-\mathrm{N}(3)$	$171(1)$
$\mathrm{Mo}(1)-\mathrm{C}(4)-\mathrm{N}(4)$	$172(1)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	$174(1)$
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(21)$	$174(1)$	$\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{C}(31)$	$172(1)$
$\mathrm{C}(4)-\mathrm{N}(4)-\mathrm{C}(41)$	$178(2)$		

Estimated standard deviations are given in parentheses.
led to the successful isolation of oxo-bridged complexes.

A perspective drawing of the complex cation of $\mathbf{2 b}$ with the atomic numbering scheme is shown in Fig. 3 and some selected bond distances and angles are given in Table 5. The complex cation of $\mathbf{2 b}$ is occupied by a terminal oxo group, a fluoride anion and four isocyanide molecules. The O and F atoms lie trans to each other and the four isocyanides complete an equatorial plane. The Mo-O bond length of $1.744(8) \AA$ is a normal value for molybdenum-oxygen double bonds $(\mathrm{Mo}=\mathrm{O})$ [18]. The terminal isocyanides are bent towards the F atom with an average $\mathrm{O}-\mathrm{Mo}-\mathrm{C}_{1}$ angle of 93.2° and an average $\mathrm{Fe}-\mathrm{Mo}-\mathrm{C}_{\mathrm{t}}$ angle of 86.7°. The origin of the F atom is responsible for BF_{4} anions, because a similar reaction has been reported elsewhere [19].

3.3. Examinations by using ${ }^{18} O$-enriched water

In order to elucidate the oxygen source of complexes 1 and 2 , reactions in the presence of enriched $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ were carried out. Complexes 1 and 2 could be prepared by the reaction of $\left[\mathrm{Mo}_{2}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{6}\right]\left(\mathrm{BF}_{4}\right)_{2}$ with RNC in THF containing a drop of $\mathrm{H}_{2}{ }^{18} \mathrm{O}$. The presence of the ${ }^{18} \mathrm{O}$ atom was confirmed by the IR spectra; the peak corresponding to $\nu(\mathrm{Mo}=\mathrm{O})$ of 2 shifted to lower energy by ca. $50 \mathrm{~cm}^{-1}(949 \rightarrow 901$ cm^{-1} (2a) ($903 \mathrm{~cm}^{-1}$ calculated value) and $947 \rightarrow 899$ cm^{-1} (2 b) ($901 \mathrm{~cm}^{-1}$ calculated value) but the shift of the $\nu_{\text {as }}$ ($\mathrm{Mo}-\mathrm{O}-\mathrm{Mo}$) vibration could not be assigned precisely owing to its weak intensity. At present we consider that the oxygen atom in complexes 1 and 2 might arise from water, although we cannot rule out other possibilities.

References

[1] F.A. Cotton and R.A. Walton, Multiple Bonds Between Metal Atoms, 2nd edn. Oxford University Press, Oxford, UK, 1993.
[2] F.A. Cotton, A.H. Reid, Jr., and W. Schwotzer, Inorg. Chem., 24 (1985) 3965.
[3] G. Pimblett, C.D. Ganner and W. Clegg, J. Chem. Soc., Dalton Trans., (1986) 1257.
[4] W.R. Herther and E.J. Corey, J. Org. Chem., 23 (1956) 1221
[5] G.J. Gilmor, J. Appl. Crystallogr., 17 (1984) 42.
[6] D.T. Cromer and J.T. Waber, International Tables for X-Ray Crystallography, Vol. IV, Kynoch Press, Birmingham, 1974.
[7] D.T. Cromer, Acta Crystallogr., 18 (1965) 17.
[8] TEXSAN - TEXRAY, Structure Analysis Package, Molecular Structure, Woodlands, TX, 1985.
[9] H. Kobayashi, Molecular Orbital Calculation Package for PC.
[10] D.L. Thoron and R. Hoffmann, Inorg. Chem., 17 (1978) 126
[11] T.A. Albright, R. Hoffmann, J.C. Thibeault and D.L. Thoron, J. Am. Chem. Soc., 101 (1979) 3801
[12] Y. Yamamoto and H. Yamazaki, J. Organomet. Chem., 282 (1985) 191.
[13] A.R. Chakravarty, F.A. Cotton and W. Schwotzer, Inorg. Chem., 23 (1984) 99
[14] R.H. Holm, Chem. Rev., 87 (1987) 1401
[15] F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, New York, 4th edn., 1980.
[16] B.S. McGilligan, T.C. Wright, G. Wilkinson, M. Motevalli and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., (1988) 1737.
[17] T.R. Weaver, T.J. Meyer, S.A. Adeyemi, G.M. Brown, R.P. Eckbcrg, W.E. Hatficld, E.C. Johnson, R.W. Murray and D. Untereker, J. Am. Chem. Soc., 97 (1975) 3039.
[18] W.A. Nugent and J.M. Mayer, Metal-Ligand Multiple Bonds. The Chemistry of Transition Metal Complexes Containing Oxo, Nitrido, Imido, Alkylidene or Alkylidyne Ligands, Wiley, New York, 1988.
[19] (a) I.B. Gorrell and G. Parkin, Inorg. Chem., 29 (1990) 2452; (b) R.H. Crabtree, G.G. Hlalky and E.M. Holt, J. Am. Chem. Soc., 105 (1983) 7302; (c) F.A. Cotton, J.L. Eglin and K.J. Wiesinger, Inorg. Chim. Acta, 195 (1992) 11.

[^0]: ${ }^{4}$ Studies on the interaction of isocyanide with transition metal complexes, Part 41. For Part 40, see Y. Yamamoto, T. Tanase and R. Sugano, J. Organomet. Chem., 486 (1995) 21-29.

 * Corresponding authors.

[^1]: ${ }^{{ }^{\mathrm{a}} R=\Sigma\left\|F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}}\right| .\right.}$
 ${ }^{\mathrm{b}} R_{\mathrm{w}}=\left\lceil\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right\rceil^{1 / 2}$.

[^2]: Estimated standard deviations are given in parentheses.
 ${ }^{\mathrm{a}} B_{\mathrm{eq}}=8 \pi^{2} / 3 \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} b_{j}^{*} a_{i} a_{j}$.

